Progression in Calculations (2022/23)

"Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject."

National Curriculum in England 2014

Department for Education

This calculation policy is a guide for all staff at Ludlow Primary School and forms part of the mathematics policy.
It is designed to be used alongside any teaching resources that teachers wish to use.
All staff have access to Maths-No Problem resources which provides lessons and a host of ideas and activities to develop mastery in Mathematics. These resources are excellent ways to support the learning of mathematics and should be tailored to support the needs of the pupils. Staff are also encouraged to access the NCETM and White Rose Websites for further ideas and guidance. In EYFS, Development Matters statements are referred to; to inform planning and progress towards meeting the Early Learning Goals:

All teachers have access to the schemes of work from the White Rose Maths Hub. This module also uses the Singapore Maths Methods and is affiliated to the workings of the New Mathematics Curriculum that is running throughout the school. Where appropriate, staff are encouraged to base their planning around these recommended modules. However, it should be emphasised that all planning should take account of the requirements of the pupils in terms of where they are in their learning and how they can achieve successful outcomes. Teachers are responsible for making these judgements.

The White Rose Maths schemes of work provide sequential programmes of study that are underpinned by promoting fluency in number. They emphasise that all pupils must have a thorough grounding in the four basic rules of number before progressing on to the next level. This complete understanding gives pupils more confidence in dealing with number activities and in turn, leads to mastery of the four operations.

Whilst the calculation policy guidance document is separated into year group phases, these are intended to be used only as a guide and it is the teachers' professional judgement as to when the pupils move on to the next phase.

Progression in Calculations (2022/23)

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{array}{ll}\text { A } \\ \text { d } \\ \text { d } \\ \text { i } \\ \text { t } \\ \text { t } \\ \text { i } & \\ \text { o } \\ \text { n } \\ \text { n }\end{array}$	Saying which number is one more than a given number. Finding the total number of items in two groups by counting all of them. Finding the total by starting at the bigger number and counting on. Introduce the part part whole model.	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method - no regrouping.	Column method regrouping. (Up to 3 digits)	Column method regrouping. (Up to 4 digits)	Column method regrouping. (with more than 4 digits) Decimals - with the same amount of decimal places	Column method regrouping. Decimals - with the different amounts of decimal places
	Taking away using objects or drawing and crossing out. Saying which number is one less than a given number. Subtracting two single digit numbers by counting back. Introduce the part part whole model.	Taking away ones Counting back Find the difference Part part whole model Make 10	Counting back Finding the difference Part whole model Make 10 Column method - no regrouping	Column method regrouping. (Up to 3 digits)	Column method regrouping. (Up to 4 digits)	Column method regrouping. (with more than 4 digits) Decimals - with the same amount of decimal places	Column method regrouping. Decimals - with the different amounts of decimal places
	Problem solving - doubling	Doubling Counting in multiples	Doubling Counting in multiples Repeated addition Arrays - showing commutative multiplication	Counting in multiples Repeated addition Arrays - showing commutative multiplication	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit numbers multiplied by a 2 digit number). Including multiplying decimals
	Problem solving - halving and sharing.	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short Division (2 digits by 1 digitconcrete and pictorial)	Division within arrays Division with a remainder Short Division (up to 3 digits by 1 digit- concrete and pictorial)	Short Division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number interpret remainders as whole numbers, fractions as required)

Progression in Calculations (2022/23)

Addition Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
More One more More than Add Addition Equals Total Make Plus Part Whole Altogether And Number bonds	Number bonds Represents Sign Subitize Counting on Commutative Systematic Greater than	Column addition Column method Exchange Regroup Estimate Inverse	Regroup Increase Operation	Commutative Sum Integer	Equal to Is the same as	Annexing Vertical Algorithm

Progression in Calculations (2022/23)

Addition progression

Objectives and strategies	Concrete	Pictorial	Abstract
Saying which number is more than a given number		Use pictures to add one more	4 and 1 makes \square $4+1=$ \square
Finding a total number of items in two groups by counting all	Use Numicon Use objects	Use pictures to add 2 groups	3 and 4 makes \qquad $3+4=$ \square

Progression in Calculations (2022/23)

Finding the total number of items in two groups by counting on	Use Numicon to count on Use blocks	Counting on using pictures	$5+3=$ \square Move into abstract (holding larger numbers in head)
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		

Progression in Calculations (2022/23)

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10 .	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Progression in Calculations (2022/23)

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{}+ & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Column } \\ \text { method } \\ \text { without } \\ \text { regrouping }\end{array} \quad \begin{array}{l}\text { Add together the ones first then add } \\ \text { the tens. Use the Base 10 } \\ \text { equipment first before moving onto } \\ \text { place value counters. } \\ 24+15=\end{array} \begin{array}{l}\text { After practically using the base 10 equipment and place } \\ \text { value counters, children can draw the counters using a } \\ \text { place value frame to help them to solve additions. } \\ 32+23=\end{array} \begin{array}{l}\text { Add the ones first, then the } \\ \text { tens, then the hundreds. }\end{array}\right\}$

Progression in Calculations (2022/23)

Progression in Calculations (2022/23)

Subtraction Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Fewer	Difference	Column	Regroup			Decomposition
Subtraction	Find the	method				
Take away	difference	Column				
Less	Difference	subtraction				
Count Back	between	Exchange				
First, Then,	Smaller	Regroup				
Now	Less than	Count on to				
How many left	Subitise	find the Minus	Part	difference		
	Whole					
	Partition					
	Related facts					

Progression in Calculations (2022/23)

Subtraction Progression

Objectives and strategies	Concrete	Pictorial	Abstract
Subtraction as take away		Crossing out	4 take away 2 makes $4-2=$
Saying which number is one less than a given number	Physically removing one item "Yum"		4 take away 1 makes \square 1 less than 4 is \square 1 fewer than 4 is \square

Progression in Calculations (2022/23)

Subtracting two single digit numbers by counting back	Physical number line	Counting back on number line	$9-4=$ \square Put larger number in head and count back
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$ Ten Frame	Cross out drawn objects to show what has been taken away. $15-3=12$ Counting back on number line	$\begin{aligned} & 7-4=3 \\ & 6=8-2 \\ & 18-3=15 \end{aligned}$

Progression in Calculations (2022/23)

Counting back	Move objects away from the group, counting backwards. Make the larger number in your subtraction. Move the beads along the bead string as you count backwards in ones.	Count back in ones using a number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at?
Find the difference	Compare amounts and objects to find the difference. \square 'Seven is 3 more than four' Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on using a number line to find the difference.	Hannah has 23 sweets. Her sister has 15 sweets. Find the difference between the number of sweets. Ben has 12 marbles, and his brother has 5 . How many more marbles does Ben have than his brother?

Progression in Calculations (2022/23)

		Comparison Bar Models Draw bars to find the difference between 2 numbers. is years ad. Her sister is 22 years oid. Find the difference in age between them.	
Part Whole Model	Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	Move to using numbers within the part whole model.
Make 10	$14-5$ Make 14 on the ten frame. We will partition the 5 . Take away the 4 first to make 10 and then take away 1 more so you have taken away 5.	Use a number line. 13-7 = Start at 13. Partition the 7 into a 3 and a 4 so can take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether.	$16-8=$ Partition the 8. How many do we take off to reach the next 10? How many do we have left to take off?

Progression in Calculations (2022/23)

		```\[ 13-7= \] \(\square\)```   ```!```	
Column   method   without   regrouping	Use the base 10 equipment to make the bigger number then take the smaller number away.   Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to support understanding.	Intermediate step of partitioning. $\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ 20+3 \\ \hline \end{gathered}$   This will lead to a clear written column subtraction.

Progression in Calculations (2022/23)

Column method with regrouping	Use Base 10 to start with before moving onto place value counters. Start with one regrouping before moving onto subtractions with 2 regroupings then onto 3.   Make the larger number with the place value counters   Start with the ones, can I take 8 from 4? I need to regroup one of my tens for 10 ones.   Now I can subtract my ones.   Now look at the tens, can I take away 8 tens? I need to regroup 1 hundred for 10 tens.	Children draw the Base 10 equipment, or the place value counters to $\begin{array}{r} 45 \\ -29 \\ \hline 16 \end{array}$   믕 $_{0}^{0}=16$ $0_{0}=16$   $19+6=16$	Children can start their formal written method by partioning the number into clear place value columns. $\begin{array}{ccc} 836 & -254 & =582 \\ \text { H } & \text { T } & \text { O } \\ 700 & \\ 800 & 130 & 6 \\ -200 & 50 & 4 \\ ------------------------------~ \end{array}$   The children then progress to formal written methods. $728-582$ $\begin{array}{r} H \mathrm{~T} O \\ 67128 \\ -\quad 582 \\ -----9 \\ 144 \end{array}$   This will lead to subtracting any number

Progression in Calculations (2022/23)


Progression in Calculations (2022/23)

## Multiplication Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Double Equal groups Same	Repeated   Addition   Groups of   Array   Fact families   Related facts   Subitize	Times   Multiple Lots of Multiplied by Inverse	Column multiplication	Product	Factor   Common   multiples   Prime   numbers   Square   numbers   Composite   numbers   Cubed   numbers   Scaling	BODMAS Powers

Progression in Calculations (2022/23)

## Multiplication Progression

\begin{tabular}{|c|c|c|c|}
\hline Objectives and strategies \& Concrete \& Pictorial \& Abstract \\
\hline Problem solving doubling \& I have 3 pears. Can you double the number of pears? \& Can you double the numicon shape? \& \begin{tabular}{l}
What is double 3 ? \\
Double 3 is \(\square\)
\end{tabular} \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
dousle 4 is
\(4 \times 2=8\) \\
Model doubling using the Base ten equipment: \\
Double \(26=\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

$\square$
$\square$
$\square$
$\square$
$\square$
\end{tabular} \& Partition a number and then double each part before recombining it back together. <br>

\hline
\end{tabular}

Progression in Calculations (2022/23)

Counting in multiples	Count in multples supportes by concrete objects in equal groups	Children make representations to show counting in multiples.   - $9-9$  	Count in multiples of a number aloud.   Write sequences with multiples of numbers. $2,4,6,8,10$   $5,10,15,20,25,30$

Progression in Calculations (2022/23)

Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problem   There are 3 sweets in one bag. How many sweets are in 5 bags altogether? $5+5+5=15$	Write addition asentences to describe objects and pictures.
Counting in multiples from 0 (repeated addition)	Count the groups as children skip count. Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud.   Write sequences with multiples of numbers.

Progression in Calculations (2022/23)

	$5+5+5+5+5+5+5+5=40$11 111 111 111   $?$	3   3   3   3	$\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \\ & 4 \times 3= \end{aligned}$
Arrays showing commutative multiplication	Create arrays using counters/cubes to show multiplication sentences	Draw arrays in different rotations to find commutative multiplication sentences   Link arrays to areas of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Progression in Calculations (2022/23)

	And find answers to 2 lots of 5, 3 lots of 2 etc.   Pupiuls should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multplication does not affect the answer.		
Using the inverse.   This should be taught alongside division so pupils learn how they work		Fact Family	Show all 8 related fact family sentences.

Progression in Calculations (2022/23)

alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$
Partitioning	Use base ten to move towards a more compact method.$4 \times 13=$x T O      	Children can represent their work with place value couters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking:	Children use partitioning and use the multiplication facts that they know to help them by making numbers $10 \times$ smaller to multiply then make them 10 x bigger in the answer. $\begin{aligned} & 33 \times 8= \\ & 30 \times 8=240 \\ & 3 \times 8=24 \end{aligned}$ $240+24=264$

Progression in Calculations (2022/23)

		Draw part whole models   Bar models are used to explore missing numbers $4 \times \square=20$	
Column multiplication	Children continue to be supported by base ten equipment. This is inititially done where ther is no regrouping ie $321 \times 2=$   Prgressing to re-grouping always mulyiply the ones column first. The corresponding long multiplication is modelled alongside.	Bar models and number lines can support learners when solving problems with multiplication	Start with long multiplication, reminding children about lining up their numbers clearly in columns.   Initially, Children to write out what they are solving next to their answer to help them understand the process.

Progression in Calculations (2022/23)


Progression in Calculations (2022/23)


Progression in Calculations (2022/23)


## Division Vocabulary

Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Share	Groups					
Half						
Equal	Left over   Equal groups   Remainder   Same   Sroups   Leside by   Division	Shared equally   between   Divisible by   Can be   divided by	Short division	Divisibility	Remainders as	
rules				decimals   Remainders as   fractions   Divisor		
	Division					Dividend   Quotient
	Divide					Annexing   Ratio   Scaling

Progression in Calculations (2022/23)

## Division progression

Objectives and   strategies	Concrete	Pictorial	Abstract
Problem   solving -   halving	Half of 8 is		
I have 4 pencils.   I give half of these pencils to a   friend.   Can you cut the cake/pizza in   half?	Cross off half of the holes on the   Numicon. How many holes are left?	What is half of $8 ?$	

Progression in Calculations (2022/23)

Problem solving sharing	Share these 6 pears between 3 children in the class.	Show how these marbles can be shared between two children	What is 8 shared between 2 ?   Ben has eight marbles and he wants to share them equally with his friend, Sam.   How many marbles to they get each?
Sharing objects into groups	I have 10 cubes. Can you share them equally into 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$   Sharing:	Share 9 sweets between 3 children $9 \div 3=3$

Progression in Calculations (2022/23)


Progression in Calculations (2022/23)

	Use the Base Ten equipment or place value counters:   24 divided into groups of $6=4$ $96 \div 3=32$		
Division with arrays.	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplictaion and division sentences by creating four linking family number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Progression in Calculations (2022/23)


Progression in Calculations (2022/23)


Progression in Calculations (2022/23)

	We regroup this ten for ten ones and then share the ones equally among the groups.   We look how much is in 1 group so the answer in 14.		
Long Division	Regroup 2 thousands for 20 hundreds.	Instead of using physical counters, students can draw the counters and circle the groups on a whiteboard or in their books.   Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.	$20 \begin{array}{rrrrr} 0 & 3 & 1 & 8 \\ 6 & 3 & 6 & 5 \\ -6 & 0 & 1 & 1 \\ -3 & 6 & 1 \\ -2 & 0 & 1 \\ 2 & 6 & 5 \\ -1 & 6 & 0 \\ \hline \end{array}$

Progression in Calculations (2022/23)


Progression in Calculations (2022/23)


